Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617222

RESUMO

Contaminant exposure can harm wildlife. However, measuring contaminant exposure in wildlife can be challenging due to accessibility of species and/or sampling tissue matrices needed to answer research questions regarding exposure. For example, in bats and other taxa that roost, it may be best to collect pooled feces from colonies for minimal disturbance to species of conservation concern, but fecal contaminant concentrations do not provide contaminant bioaccumulation estimates. Thus, there is a need for quantifying relationships between sample matrices for measuring contaminant exposure to answer research questions pertaining to wildlife health and addressing conservation needs. Our goal was to determine relationships between fecal and fur total mercury (THg). To do so, we collected paired feces and fur from Mexican free-tailed bats (Tadarida brasiliensis) in summer 2023 in western Oklahoma at a maternity roost with no known Hg point source. We analyzed THg in each sample matrix for each individual (n = 48). We found no relationship between individual fecal and fur THg. However, when averaged, fur THg was 6.11 times greater than fecal THg. This factor can be used as a screening-level risk assessment of under-roost feces, which could then be followed by direct assessments of fur THg concentrations and health impacts. We encourage the use of this conversion factor across other insectivorous bat species and sites for estimating initial risks of contaminant exposure with minimal disturbance to species of conservation concern, when timely research for conservation actions are needed, and when a contaminant point source is not yet known.

2.
Ecol Evol ; 14(2): e10874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390000

RESUMO

Numerous factors influence the timing of spring migration in birds, yet the relative importance of intrinsic and extrinsic variables on migration initiation remains unclear. To test for interactions among weather, migration distance, parasitism, and physiology in determining spring departure date, we used the Dark-eyed Junco (Junco hyemalis) as a model migratory species known to harbor diverse and common haemosporidian parasites. Prior to spring migration departure from their wintering grounds in Indiana, USA, we quantified the intrinsic variables of fat, body condition (i.e., mass ~ tarsus residuals), physiological stress (i.e., ratio of heterophils to lymphocytes), cellular immunity (i.e., leukocyte composition and total count), migration distance (i.e., distance to the breeding grounds) using stable isotopes of hydrogen from feathers, and haemosporidian parasite intensity. We then attached nanotags to determine the timing of spring migration departure date using the Motus Wildlife Tracking System. We used additive Cox proportional hazard mixed models to test how risk of spring migratory departure was predicted by the combined intrinsic measures, along with meteorological predictors on the evening of departure (i.e., average wind speed and direction, relative humidity, and temperature). Model comparisons found that the best predictor of spring departure date was average nightly wind direction and a principal component combining relative humidity and temperature. Juncos were more likely to depart for spring migration on nights with largely southwestern winds and on warmer and drier evenings (relative to cooler and more humid evenings). Our results indicate that weather conditions at take-off are more critical to departure decisions than the measured physiological and parasitism variables.

3.
Virus Evol ; 10(1): vead079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361817

RESUMO

Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and-most importantly-hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.

4.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370734

RESUMO

Bacterial pathogens remain poorly characterized in bats, especially in North America. We describe novel (and in some cases panmictic) hemoplasmas (12.9% positivity) and bartonellae (16.7% positivity) across three colonies of Mexican free-tailed bats (Tadarida brasiliensis), a partially migratory species that can seasonally travel hundreds of kilometers. Molecular analyses identified three novel Candidatus hemoplasma species most similar to another novel Candidatus species in Neotropical molossid bats. We also detected novel hemoplasmas in sympatric cave myotis (Myotis velifer) and pallid bats (Antrozous pallidus), with sequences in the latter 96.5% related to C. Mycoplasma haemohominis. We identified eight Bartonella genotypes, including those in cave myotis, with 96.7% similarity to C. Bartonella mayotimonensis. We also detected Bartonella rochalimae in migratory Tadarida brasiliensis, representing the first report of this human pathogen in bats. The seasonality and diversity of these bacteria observed here suggest that additional longitudinal, genomic, and immunological studies in bats are warranted.

5.
Conserv Physiol ; 12(1): coad102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293641

RESUMO

Monitoring the health of wildlife populations is essential in the face of increased agricultural expansion and forest fragmentation. Loss of habitat and habitat degradation can negatively affect an animal's physiological state, possibly resulting in immunosuppression and increased morbidity or mortality. We sought to determine how land conversion may differentially impact cellular immunity and infection risk in Neotropical bats species regularly infected with bloodborne pathogens, and to evaluate how effects may vary over time and by dietary habit. We studied common vampire bats (Desmodus rotundus), northern yellow-shouldered bats (Sturnira parvidens) and Mesoamerican mustached bats (Pteronotus mesoamericanus), representing the dietary habits of sanguivory, frugivory and insectivory respectively, in northern Belize. We compared estimated total white blood cell count, leukocyte differentials, neutrophil to lymphocyte ratio and infection status with two bloodborne bacterial pathogens (Bartonella spp. and hemoplasmas) of 118 bats captured in a broadleaf, secondary forest over three years (2017-2019). During this period, tree cover decreased by 14.5% while rangeland expanded by 14.3%, indicating increasing habitat loss and fragmentation. We found evidence for bat species-specific responses of cellular immunity between years, with neutrophil counts significantly decreasing in S. parvidens from 2017 to 2018, but marginally increasing in D. rotundus. However, the odds of infection with Bartonella spp. and hemoplasmas between 2017 and 2019 did not differ between bat species, contrary to our prediction that pathogen prevalence may increase with land conversion. We conclude that each bat species invested differently in cellular immunity in ways that changed over years of increasing habitat loss and fragmentation. We recommend further research on the interactions between land conversion, immunity and infection across dietary habits of Neotropical bats for informed management and conservation.

6.
PLoS One ; 19(1): e0290785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266017

RESUMO

The Veterans Health Administration is chartered "to serve as the primary backup for any health care services needed…in the event of war or national emergency" according to a 1982 Congressional Act. This mission was invoked during the COVID-19 pandemic to divert clinical and research resources. We used an electronic mixed-methods questionnaire constructed using the Theoretical Domains Framework (TDF) and the Capability, Opportunity, and Motivation (COM-B) model for behavior change to study the effects of the pandemic on VHA researchers. The questionnaire was distributed electronically to 118 cancer researchers participating in national VHA collaborations. The questionnaire received 42 responses (36%). Only 36% did not feel that their research focus changed during the pandemic. Only 26% reported prior experience with infectious disease research, and 74% agreed that they gained new research skills. When asked to describe helpful support structures, 29% mentioned local supervisors, mentors, and research staff, 15% cited larger VHA organizations and 18% mentioned remote work. Lack of timely communication and remote work, particularly for individuals with caregiving responsibilities, were limiting factors. Fewer than half felt professionally rewarded for pursuing research related to COVID. This study demonstrated the tremendous effects of the COVID-19 pandemic on research activities of VHA investigators. We identified perceptions of insufficient recognition and lack of professional advancement related to pandemic-era research, yet most reported gaining new research skills. Individualizing the structure of remote work and ensuring clear and timely team communication represent high yield areas for improvement.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Saúde dos Veteranos , Pesquisadores , Oncologia
7.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961388

RESUMO

The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can lead to the emergence of novel tick-borne pathogens or the re-emergence of previously eradicated ones. This study assessed the prevalence of exotic tick species parasitizing resident, short-distance, and long-distance songbirds during spring and autumn at stopover sites in the northern Gulf of Mexico using the mitochondrial 12S rDNA gene. Birds were captured for tick collection from six different sites from late August to early November in both 2018 and 2019. The highest number of ticks were collected in the 2019 season. Most ticks were collected off the Yellow-breasted Chat (Icteria virens) and Common Yellowthroat (Geothlypis trichas), and 54% of the total ticks collected were from Grand Chenier, LA. A high throughput 16S ribosomal RNA sequencing approach was followed to characterize the microbial communities and identify pathogenic microbes in all tick samples. Tick microbial communities, diversity, and community structure were determined using quantitative insight into microbial ecology (QIIME). The sparse correlations for compositional data (SparCC) approach was then used to construct microbial network maps and infer microbial correlations. A total of 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre was the most abundant tick genus and species, respectively. Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant bacteria include the pathogenic Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. BLAST analysis and phylogenetic reconstruction of the Rickettsia sequences revealed the highest similarities to pathogenic spotted and non-spotted fever groups, including R. buchneri, R. conorii, R. prowazekii, R. bellii, R. australis, R. parkeri, R. monacensis, and R. monteiroi. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also observed a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing means dispersal distances from 421-5003 kilometers. These findings strongly highlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.

8.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961540

RESUMO

Orthopoxviruses (OPVs), including the causative agents of smallpox and mpox have led to devastating outbreaks in human populations worldwide. However, the discontinuation of smallpox vaccination, which also provides cross-protection against related OPVs, has diminished global immunity to OPVs more broadly. We apply machine learning models incorporating both host ecological and viral genomic features to predict likely reservoirs of OPVs. We demonstrate that incorporating viral genomic features in addition to host ecological traits enhanced the accuracy of potential OPV host predictions, highlighting the importance of host-virus molecular interactions in predicting potential host species. We identify hotspots for geographic regions rich with potential OPV hosts in parts of southeast Asia, equatorial Africa, and the Amazon, revealing high overlap between regions predicted to have a high number of potential OPV host species and those with the lowest smallpox vaccination coverage, indicating a heightened risk for the emergence or establishment of zoonotic OPVs. Our findings can be used to target wildlife surveillance, particularly related to concerns about mpox establishment beyond its historical range.

9.
One Health ; 17: 100633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920218

RESUMO

Hemotropic mycoplasmas are emerging as a model system for studying bacterial pathogens in bats, but taxonomic coverage of sampled host species remains biased. We leveraged a long-term field study in Belize to uncover novel hemoplasma diversity in bats by analyzing 80 samples from 19 species, most of which are infrequently encountered. PCR targeting the partial 16S rRNA gene found 41% of bats positive for hemoplasmas. Phylogenetic analyses found two novel host shifts of hemoplasmas, four entirely new hemoplasma genotypes, and the first hemoplasma detections in four bat species. One of these novel hemoplasmas (from Neoeptesicus furinalis) shared 97.6% identity in the partial 16S rRNA gene to a human hemoplasma (Candidatus Mycoplasma haemohominis). Additional analysis of the partial 23S rRNA gene allowed us to also designate two novel hemoplasma species, in Myotis elegans and Phyllostomus discolor, with the proposed names Candidatus Mycoplasma haematomyotis sp. nov. and Candidatus Mycoplasma haematophyllostomi sp. nov., respectively. Our analyses show that additional hemoplasma diversity in bats can be uncovered by targeting rare or undersampled host species.

10.
Ecohealth ; 20(3): 231-235, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37936004

RESUMO

Characterizing spatial differences in wildlife immunity is the first step to identify environmental drivers of host defense and disease risks. The house sparrow (Passer domesticus) is a model system for ecoimmunology, but spatial differences in immunity have been largely restricted to the invasive range of this global species. We provide an initial test of spatial variation in immune response to phytohemagglutinin in the native range, finding that birds from Romania have greater inflammatory responses than birds from Egypt. Future broad surveys across the house sparrow native range could contextualize these differences and determine underlying drivers.


Assuntos
Animais Selvagens , Pardais , Animais , Romênia
11.
Trends Ecol Evol ; 38(12): 1125-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684132

RESUMO

Understanding pathogen transmission and infection patterns at multiple biological scales is a central issue in disease ecology and evolution. Here, we suggest that functional traits of host species readily affect infection patterns of species, communities, and landscapes, and thus serve as a linkage for multilevel studies of infectious disease.


Assuntos
Ecologia , Fenótipo
12.
Genome Biol Evol ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37728212

RESUMO

Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.


Assuntos
Quirópteros , Neoplasias , Humanos , Animais , Quirópteros/genética , Filogenia , Evolução Molecular , Genômica , Longevidade , Neoplasias/genética , Neoplasias/veterinária
13.
Ecol Lett ; 26(10): 1780-1791, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586885

RESUMO

Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community-level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community-weighted means of these traits were also correlated with community-level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait-based ecology into the framework of diversity-disease relationship, and provide new insights for HPAI prediction and prevention.


Assuntos
Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Ecologia , Europa (Continente)/epidemiologia
14.
Patterns (N Y) ; 4(6): 100738, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409053

RESUMO

Predicting host-virus interactions is fundamentally a network science problem. We develop a method for bipartite network prediction that combines a recommender system (linear filtering) with an imputation algorithm based on low-rank graph embedding. We test this method by applying it to a global database of mammal-virus interactions and thus show that it makes biologically plausible predictions that are robust to data biases. We find that the mammalian virome is under-characterized anywhere in the world. We suggest that future virus discovery efforts could prioritize the Amazon Basin (for its unique coevolutionary assemblages) and sub-Saharan Africa (for its poorly characterized zoonotic reservoirs). Graph embedding of the imputed network improves predictions of human infection from viral genome features, providing a shortlist of priorities for laboratory studies and surveillance. Overall, our study indicates that the global structure of the mammal-virus network contains a large amount of information that is recoverable, and this provides new insights into fundamental biology and disease emergence.

15.
PLoS Negl Trop Dis ; 17(6): e0011407, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276217

RESUMO

Beginning December 2016, sylvatic yellow fever (YF) outbreaks spread into southeastern Brazil, and Minas Gerais state experienced two sylvatic YF waves (2017 and 2018). Following these massive YF waves, we screened 187 free-living non-human primate (NHPs) carcasses collected throughout the state between January 2019 and June 2021 for YF virus (YFV) using RTqPCR. One sample belonging to a Callithrix, collected in June 2020, was positive for YFV. The viral strain belonged to the same lineage associated with 2017-2018 outbreaks, showing the continued enzootic circulation of YFV in the state. Next, using data from 781 NHPs carcasses collected in 2017-18, we used generalized additive mixed models (GAMMs) to identify the spatiotemporal and host-level drivers of YFV infection and intensity (an estimation of genomic viral load in the liver of infected NHP). Our GAMMs explained 65% and 68% of variation in virus infection and intensity, respectively, and uncovered strong temporal and spatial patterns for YFV infection and intensity. NHP infection was higher in the eastern part of Minas Gerais state, where 2017-2018 outbreaks affecting humans and NHPs were concentrated. The odds of YFV infection were significantly lower in NHPs from urban areas than from urban-rural or rural areas, while infection intensity was significantly lower in NHPs from urban areas or the urban-rural interface relative to rural areas. Both YFV infection and intensity were higher during the warm/rainy season compared to the cold/dry season. The higher YFV intensity in NHPs in warm/rainy periods could be a result of higher exposure to vectors and/or higher virus titers in vectors during this time resulting in the delivery of a higher virus dose and higher viral replication levels within NHPs. Further studies are needed to better test this hypothesis and further compare the dynamics of YFV enzootic cycles between different seasons.


Assuntos
Febre Amarela , Vírus da Febre Amarela , Animais , Humanos , Vírus da Febre Amarela/genética , Brasil/epidemiologia , Surtos de Doenças , Callithrix
16.
Nat Microbiol ; 8(6): 1176-1186, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231088

RESUMO

The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Filogenia , SARS-CoV-2/genética , COVID-19/epidemiologia , China
17.
Prostate ; 83(9): 840-849, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988342

RESUMO

BACKGROUND: Evading immune surveillance is a hallmark for the development of multiple cancer types. Whether immune evasion contributes to the pathogenesis of high-grade prostate cancer (HGPCa) remains an area of active inquiry. METHODS: Through single-cell RNA sequencing and multicolor flow cytometry of freshly isolated prostatectomy specimens and matched peripheral blood, we aimed to characterize the tumor immune microenvironment (TME) of localized prostate cancer (PCa), including HGPCa and low-grade prostate cancer (LGPCa). RESULTS: HGPCa are highly infiltrated by exhausted CD8+ T cells, myeloid cells, and regulatory T cells (TRegs). These HGPCa-infiltrating CD8+ T cells expressed high levels of exhaustion markers including TIM3, TOX, TCF7, PD-1, CTLA4, TIGIT, and CXCL13. By contrast, a high ratio of activated CD8+  effector T cells relative to TRegs and myeloid cells infiltrate the TME of LGPCa. HGPCa CD8+  tumor-infiltrating lymphocytes (TILs) expressed more androgen receptor and prostate-specific membran antigen yet less prostate-specific antigen than the LGPCa CD8+  TILs. The PCa TME was infiltrated by macrophages but these did not clearly cluster by M1 and M2 markers. CONCLUSIONS: Our study reveals a suppressive TME with high levels of CD8+ T cell exhaustion in localized PCa, a finding enriched in HGPCa relative to LGPCa. These studies suggest a possible link between the clinical-pathologic risk of PCa and the associated TME. Our results have implications for our understanding of the immunologic mechanisms of PCa pathogenesis and the implementation of immunotherapy for localized PCa.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias da Próstata , Masculino , Humanos , Gradação de Tumores , Linfócitos T CD8-Positivos/patologia , Neoplasias da Próstata/patologia , Próstata/patologia , Antígeno Prostático Específico , Linfócitos do Interstício Tumoral , Imunossupressores , Análise de Célula Única , Microambiente Tumoral
19.
Ecol Evol ; 13(2): e9784, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744075

RESUMO

Tropical regions are experiencing rapid rates of forest fragmentation, which can have several effects on wildlife, including altered parasite dynamics. Bats are a useful host group to consider the effects of fragmentation, because they are abundant in the tropics, serve important ecological roles, and harbor many parasites. Nevertheless, research on the effects of fragmentation on bat ectoparasites is still limited. To help guide ongoing and future research efforts, this study had two objectives: (1) conduct a gap analysis to characterize the state of currently available research on fragmentation effects on bat ectoparasites and (2) conduct a preliminary meta-analysis to identify current trends. We systematically highlighted several research gaps: Studies comparing the effects of fragmented versus continuous forests on ectoparasites are limited and have primarily been conducted in the Neotropics, with a focus on bats in the superfamily Noctilionidea (especially frugivorous phyllostomids). Our preliminary meta-analysis suggested that ectoparasite prevalence (but not the mean or variance in intensity) was higher in fragments than in continuous forests. Moreover, prevalence increased with increasing roost duration, and mean intensity was higher for bats with higher wing aspect ratios. Intensity variance was affected by an interaction between forest type and wing aspect ratio, such that variance increased for bats with high-wing aspect ratios in continuous forests but decreased in fragments. These results suggest that fragmentation can shape aspects of bat ectoparasitism and could have implications for the ecology, health, and conservation of bats in fragmented landscapes. However, existing research gaps could bias our current understanding of habitat change and bat health, and future research should thus investigate these effects in the Paleotropics and with other bat families.

20.
PLoS Negl Trop Dis ; 17(2): e0011126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36763578

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0007393.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...